This straightforward 3-D display algorithm traverses voxels slice by slice to
project each voxel on the screen. No surface detection or z-buffer is needed.

Back-to-Front Display of Voxel-Based
Objects

Gideon Frieder

University of Michigan

With the advent of medical imaging devices such as
computed tomography, positron emission tomography,
single photon emission computed tomography, magnetic
resonance imaging, and ultrasound scanners, methods are
widely available for capturing the shape and other proper-
ties of real objects (human organs) directly in machine-
readable form. One way of presenting the information for
review is to display the organ as a three-dimensional ob-
ject, using established computer graphics techniques for
creating images by projection onto a two-dimensional sur-
face such as the screen of a raster-scan device.

Many approaches to 3-D display are available; both
hardware and software methods have been reviewed
recently. -2 Most methods require some preprocessing of
the input to reduce data and to provide object representa-
tions better suited to the available display algorithms. One
approach that has been applied widely to medical applica-
tions uses an automatic boundary-detection algorithm to
extract the surface of a single connected object from the
data.3-5 A second approach extracts a set of 1-D primi-
tives (contours) describing the boundaries of the object on
a slice-by-slice basis. Surface representations can be ob-
tained from the contours directly, or indirectly by tiling or
by spline techniques.®!4 A third approach retains 3-D
voxels (cubes or rectangular parallelepipeds) as primitives
but achieves data compression through octree encoding,
which provides an efficient object representation. 316

52 0272-1716/85/0100-0052$01.00 © 1985 IEEE

Dan Gordon

University of Cincinnati

R. Anthony Reynolds

University of Pennsylvania

While surface representations achieve extensive data
reduction, surface formation is time-consuming. In addi-
tion it is not possible to explore the interior of the object
interactively, or generate cut-away views, without form-
ing a new surface. The back-to-front (BTF) method
presented in this article displays entire solid objects com-
posed of voxels without extracting the object surface first
and with a minimum of preprocessing.

Data collection and the cuberille model

One representation that corresponds closely to the for-
mat in which data are collected by medical imaging
systems stores the entire object in ferms of voxels. A voxel
is a rectangular volume element obtained when space is
divided by three sets of parallel planes, each set being or-
thogonal to the other two. The voxels making up an ob-
ject are usually the same size; that is, all the planes in a
given set are equally spaced. On the other hand, the spac-
ing of one set of planes need not be the same as the spacing
of another. For example, when a patient is examined with
a computed tomography (CT) scanner, the voxels are
usually rectangular parallelepipeds with a square cross
section within a transverse slice and maximum dimension
along the long axis of the patient (Figure 1). Associated
with each voxel are three integer coordinates representing

IEEE CG&A

its location in space, and an integer called its density,
representing some object property at this location (x-ray
attenuation, radiopharmaceutical concentration, etc.).
The voxels can be converted to cubes by suitable inter-
polation, and we will henceforth assume that all voxels to
be displayed are cubical in shape. Such a dissection of
space into cubes is called a cuberille.3.17.18

Previous methods for direct display
of voxel-based objects

Display methods that do not extract or fit surfaces to
the data but rather process all the voxels in the scene at
display time have been developed largely as a result of the
work of Meagher on octree encoding. '5:16 The use of oc-
trees for object representation apparently was suggested
first by Hunter;! in some respects, octrees can be con-
sidered to be a special case of the tree structures devised
for hidden-surface removal by Schumacker2 and later
extended by Fuchs et al.2! Octrees and related approaches
have been reviewed by Srihari.2? The basic idea is that the
voxels making an object are represented by a hierarchical
8-ary tree structure, which achieves data compression
through spatial coherence. An advantage of octree en-
coding is that simple operations (union, intersection, and
difference of objects; translation, rotation, and scaling;
interference detection and hidden-surface removal) can be
accomplished by accessing each node of the tree once at
most. Furthermore these operations require only simple
arithmetic such as integer additions, shifts, and com-
parisons. Another useful feature of the octree approach is
the ability to trade off computation time against preci-
sion: A coarse image can be generated very quickly with
the high-frequency details emerging later as more process-
ing is carried out.

Hidden-surface removal can be accomplished by read-
ing out the cubes that correspond to nodes of the octree in
a recursive back-to-front sequence (Figure 2). This prop-
erty, which derives from the 3-D array from which the oc-
tree is built, is referred to as ‘‘spatial pre-sortedness.”’!8
Changing the observer’s viewpoint corresponds to simply
visiting the nodes of the tree in a different sequence; no
modification of the octree is required. Front-to-back
readout is also possible and is more efficient in the average
case: Once a region of the screen has been painted, nodes
projecting on it can be ignored.!® On the other hand,
building an octree requires more steps than simply prepar-
ing an array of voxels for display, and, on a conventional
computer, traversing a tree incurs more overhead than se-
quentially accessing the elements of an array.

A front-to-back algorithm was proposed by Strat as a
means of realistically depicting mountains and other
geographical features on flight simulators.23 Strat’s
algorithm addresses a special case of the 3-D problem,
since each input (x,y) point has a unique z (height)

January 1985

associated with it. A front-to-back octree display algo-
rithm was given by Meagher. '® Simplified front-to-back
display methods have been used by Vannier et al. and Gib-
son for display of medical objects.2425 Their methods are
less general than ours in that only certain viewing direc-
tions are permitted. Similarly restrictive octree display
algorithms have been given by Doctor and Torborg.26 An
alternative slice-by-slice front-to-back approach has been
given by Farrell et al.?” Their method differs from others
in that the data are rotated and new slices are constructed
before display. Methods of ray-tracing voxels have been

Figure 1. Typical CT slices. ax= ay=pixel size; az=

slice thickness.

44 | 47 | 74

a2 45 72 75

24 27 | 54 57

22 25 | 52 55

Figure 2. Recursive back-to-front voxel readout. Note that
01234567, 02134567, and 03216547 are some possible oc-
tant readout sequences for the object orientation shown.
The object in this example could be represented by an oc-
tree of depth 2: Voxels are labeled with two digits, the first
identifying the octant, the second identifying the voxel
within the octant. The voxels can be read out in several
recursive back-to-front sequences including 00, 01, 02,
03...00,10,11,12.. .74, 75, 76, 7T7.

53

proposed by Gordon and implemented by Tuy and
Tuy.28.29

The back-to-front display method

The BTF algorithm for three-dimensional arrays, first
proposed by Gordon, is based on traversing the slices,
rows, and columns of the array in order of decreasing
distance to the observer. For purposes of exposition, a
2-D analog of the problem is presented, using a binary

I [LEER
\

Figure 3. Back-to-front voxel readout in two dimensions.
For the purpose of illustration, assume the origin is at the
corner farthest from the observer. The voxels are tra-
versed in order of increasing values of x and y; either x ory
may be chosen as the faster running index.

003 /013 /023 /033
103 /113 / 123/ 133
203 /213/223 /233 /| &}
303 /313 / 323/ 333

5
303 | 313 | 323 | 333 3;2,11
5%

302 | 312 | 322 | 332

301 | 311 | 321 | 331

s
300 | 310 320 | 330 !’a

Figure 4. Slice-by-slice back-to-front voxel readout. Slices
are read out starting with the slice farthest from the
observer. Within each slice, voxels are read out staring
with the corner farthest from the observer. The voxels are
labeled with three digits, identifying the x, y, and z coor-
dinates in object space. For the object orientation shown,
the voxels can be read out in several slice-by-slice back-to-
front sequences including 000, 100, 200...010, 110,
210. . .133, 233, 333.

picture. Assume that in Figure 3 the voxels A,B,C,D are
full and are to be projected onto the screen; all other vox-
els are empty. Assume the x,y axes are arranged as in the
diagram, so that the origin is farthest from the observer.
The voxels should be traversed in order of increasing
values of x and y; either x or y may be chosen as the fastest
changing index. Thus, the sequences A,B,C,D (x changes
fastest) or C,A,D,B (y changes fastest) will both result in
a correct rendition of the scene. The reason for this is that
if (part of) a voxel with coordinates (x,y) is obscured by
(part of) a voxel with coordinates (x’,y’), then x < x’
and y < y’ so that by projecting (x,y) before (x’,y"), the
correct image is obtained.

The correctness of the three-dimensional method is
now obvious (Figure 4). Assuming the origin is farthest
from the observer, then it is necessary to simply traverse
the voxels in the 3-D array in order of increasing x, y, and
z. If the origin is not the farthest corner from the observ-
er, some of x,y,z should be increasing and some should be
decreasing. However, the choice of which index changes
fastest can be arbitrary. This fact can be used to advan-
tage in the case of data that are stored slice by slice, mak-
ing it possible to read one slice (or portion of a slice) at a
time from disk storage into main memory for processing.
Once a slice is read in, the voxels in it are projected in the
appropriate increasing or decreasing sequence of x and y
values. Note that the order in which voxels are projected
on the screen is not in strictly decreasing distance, so our
algorithm is not an example of the well-known *‘painter’s
algorithm.”

The following conventions are useful in the description
of the BTF algorithm. We refer to the coordinate system
in which the voxels of the object are defined as object
space and the coordinate system in which they are dis-
played as image space (Figure 5). Object space coordi-
nates are specified by integers, and object space and image
space are related by affine transformations, the products
of rotations, translations, and dilations (scaling). We use
orthographic projections, since these preserve distances
and other important geometrical information for direct
measurement. For implementational efficiency we usually
threshold the data on the basis of density; that is, we ob-

Figure 5. Object space (x, y, z) and image space (x ",y ',z’).

IEEE CG&A

tain binary data by assigning 1 to those voxels whose den-
sity lies within a given range, and 0 otherwise. We assume
that a single (imaginary) light source is used to illuminate
the object, and that it is coincident with the observer’s
position; thus we do not describe methods to generate
shadows. Lastly, we assume that the surfaces of the ob-
jects are diffuse reflectors, and our present shading im-
plementation does not produce highlights.

Implementation of the back-to-front method

We have implemented a back-to-front program on the
Data General Eclipse S/140 minicomputer, using Fortran
programming. This machine is representative of the
minicomputers supplied as standard equipment on most
CT scanners (e.g., General Electric 8800 and 9800 CT/T).
One disadvantage of such minicomputers is their small
address space (32K 16-bit words). For efficient main
memory utilization, our program displays binary objects
(one bit per voxel), although on a machine with more
main memory, gray-scale data could be used (8-16 bits per
voxel). The object to be displayed is assumed to be divided
into slices perpendicular to the z axis. The x and y axes are
attached to the object as shown in Figure 5.

To specify any desired orientation of an object for dis-
play, the user must specify three angles, 4, B, and C,
which result in rotations about three predetermined axes.
We have chosen our angles to correspond to manipula-
tions of the object that are natural to the medical user.
Imagine a patient lying supine (face up) in a CT scanner,
with feet toward the observer; axes through the center of
the patient are labeled x;, y,, and z;. The angle A4 in-
dicates swivel about the longitudinal z, axis (Figure 6), the
angle B indicates tilt about the x, axis, and the angle Cin-
dicates rotation about the y, axis. The transformations
are applied in the order given (first swivel, then tilt, then
vertical rotation).

The physical organization of the data prescribes the
order in which the voxels are traversed for display genera-
tion. For the particular case of CT data, the voxels are
traversed as follows:

(1) Outer loop on the slices (z-direction).

(2) Within each slice, an outer loop on the rows (y-
direction).

(3) Innermost loop in the x-direction.

This traversal is chosen because CT data are usually

Figure 6. Angles A (swivel), B (tilt), and C (vertical rotation)
are entered by the user to specify the object orientation.

organized in a slice-by-slice fashion, with the data within
each slice stored row by row.

Given a voxel with coordinates (x,y,z) in object space,
its coordinates in image space are given by

X! X X
¥orEE] F [N (0)]
z" Z) ESN
where: s
Xy X X
M e B = | I
2 A | Z¢]

T=[t;] is the rotation matrix (see box this page);
[2x.,2y.,2z.] are the dimensions of a bounding box
enclosing the object; [2x,,2y,2z] are the display device
bounding dimensions (screen size is 2x; X 2y, and 2z, is
the number of gray levels); and S is a scale factor.

The matrix T is computed after the angles 4, B, C, and
the scale-factor S have been read in. Table lookups are
used for the transformations as follows:

(1) Each slice determines a value of z, so the three prod-
ucts 7132y, 132, 1332, are computed just once for each
slice.

(2) All possible values for #,,y,, 15,5, , t3,y, are stored
in three arrays. For any given y (whose value is always an
integer) these products are retrieved from the arrays using
y as an index.

(3) All possible values for ¢y, x,, t,x,, 3, x, are stored
in three arrays and retrieved as needed.

January 1985

55

Figure 7. Three views of a human spine and one of a human skull: User outlines material to be removed with a trackball
(a); unobscured view with unwanted material removed (b); part of the same spine cut open with object space clipping
plane to reveal internal structure (c); and a skull of another patient (d).

In a typical setting, the bounding box could be 256 x
256 x 256, and each application of Equation 1 requires
nine multiplications. This would have resulted in
9x224 =1.51 x 108 multiplications instead of the 9X
256 = 2304 required by our use of look-up tables. A fur-
ther saving is achieved by computing the sums 7, y; +
11321, t2 ¥, + t33 z2; and ¢35 y; + 33 Z; just once for
each row of a slice.

56

"The BTF program produces a depth-shaded image,
which is somewhat lacking in fine detail. This image is
used as input to our gradient-shading method, which uses
both the distance from the light source and the object sur-
face orientation to compute the intensity to be assigned to
each pixel.30% We used gradient shading to produce the im-
ages shown in Figure 7.

Before our BTF program can be applied, the slice data

IEEE CG&A

Table 1.
Statistics for the objects displayed in Figure 7. These examples have been chosen to illustrate the wide range of ob-
ject size and complexity encountered in clinical applications. Timings are shown for gradient-shaded images; depth-

shaded images take 25-30 seconds less.

e b ok Full Voxels (min./sec.)
Ta 205% 251% 178 3,015,430 712
Tb } 14/35 6/35 [205% 251% 178 3,004,880 7/09
Tc 100x 251% 178 1,363,060 3/37
1d 3/44 2/26 20x 147x 77 222,228 1/09

*Array processor

from the CT scanner must be converted into the cuberille
format. This preprocessing is not strictly part of the BTF
algorithm (since similar conversion is required by many
other 3-D display techniques); its details are described in
Frieder et al.3! Table 1 lists the preprocessing times, with
and without an array processor. The array processor
(Floating Point Systems AP120B) is standard equipment
on GE 8800 CT scanners.

Interaction and further developments

Because the BTF method accesses all voxels of the scene
at display time (not just those voxels making up the object
surface), several simple techniques are available for inter-
acting with and modifying the object. These interactive
techniques can be used to plan and simulate surgical pro-
cedures or simply to obtain an unobstructed view of an
organ of interest.32 We describe three interactive options
here.

The simplest way to remove parts of the object is to use
object space clipping planes orthogonal to the axes; these
can be implemented by changing the loop limits for the
X,y,z indices. An alternative is to use image space clipping
planes, fixed with respect to the observer; these are also
easily implemented, since voxels that lie on the observer’s
side of a clipping plane are simply ignored. Clipping
planes result in cut-away views of the object’s interior
(Figure 7¢). A third option is to directly specify parts of
the object to be altered or deleted. In our implementation,
the observer uses a trackball to outline a cylinder perpen-
dicular to the screen surface and specifies its depth; voxels
whose projections fall within the cylinder during the BTF
process are deleted from the input file. We have found
this type of interaction most useful in removing unwanted
parts of the scene to obtain an uncluttered display (Figure
7a,b).

Our BTF program is capable of generating arbitrary
views of complex objects from a binary voxel representa-

January 1985

tion in just a few minutes (Table 1); the preprocessing re-
quired to obtain the binary file takes from three to 15
minutes (two to seven minutes with an array processor).
We have experimental evidence that the BTF computation
is dominated by the number of 1-voxels to be transformed
and displayed. For typical objects, approximately six per-
cent of the running time is spent reading the input file, and
another six percent is spent scanning empty words (i.e., 16
0-voxels packed into a single machine word). On the other
hand, approximately 50 percent of the full voxels en-
countered will be obscured later by a full word (i.e., 16
1-voxels packed into a single machine word). We have ex-
ploited these observations in a special-purpose program,
which displays objects from the six major viewing direc-
tions only (along the positive and negative coordinate
axes). This choice of special viewing directions avoids the
need for coordinate transformations and allows a simple
“‘look-ahead’’ procedure to avoid displaying any full vox-
el that will be obscured later by a full word. The special
program runs approximately five times faster than the
general BTF program.

As mentioned earlier, one advantage of octree encoding
is that a rough (low-resolution) image can be generated
quickly. The following modification of the BTF method
will achieve the same result. The data are packed so that
each byte codes a 2x2x2 cube of voxels. For a low-
resolution image, if a byte has more than four bits set, it is
considered full, otherwise empty; the number of bits set is
obtained from the byte value (zero to 255) by a look-up
table. Processing the data byte by byte would produce an
image of one half the linear resolution in approximately
one eighth of the time; for a normal-resolution image the
bytes are unpacked, and all the voxels are traversed back
to front in the normal fashion.

In our implementation of the BTF display method, we
have restricted the scale factors so that they will not be
greater than unity. This restriction is imposed because,
unless the pixels of the image are larger than the voxels,
not all pixels will be painted in, and artifact holes could

57

Figure 8. The maximum scale factor depends on the definition of object connectivity chosen: face-connected voxels (a);
edge-connected voxels (b); and corner-connected voxels (c).

result at certain orientations. Specifically, the scale factor
can be at most 1 for a head-on view, 1/V2 if the object is
rotated about a single axis, and 1/V3 for arbitrary orienta-
tions. In fact, 1/vV2 can be used for arbitrary orientations
by accepting the convention that corner-connected voxels
may appear disconnected, but edge-connected voxels may
not (Figure 8).

One way of allowing arbitrary scale factors is to replace
each voxel by a sphere whose projection is a disk of
diameter av3, where a is the size of the voxel after scaling.
Fast methods of rendering disks have been devised by
Badler.?® Another approach magnifies the 2-D image
after display. However, the use of large voxels or large
pixels (magnified displays) is undesirable because of the
loss of real spatial information and the occurrence of
aliasing errors.

One approach that does not result in loss of resolution
considers each voxel to be a cube with three visible faces to
be painted with a standard polygon-fill algorithm; this is
the solution adopted in the 3D83 package.* We have not
implemented this option in the BTF program because of
the associated time penalty. However, we are currently ex-
amining faster scan-conversion methods that achieve the
same result.

We have presented a simple technique for displaying
voxel-based objects. The technique can operate either
directly on gray-scale data or on binary data derived from
them. The latter form is particularly amenable to interac-
tive dissection and manipulation. Interaction can be ac-
complished efficiently because of straightforward trans-
formations back and forth between screen coordinates,
object coordinates, and physical location of voxels.

The main advantage of our technique is that it can be
used immediately after the binary array is formed, and no
further preprocessing is required even after user interac-
tion. Surface formation methods require the further step

58

of boundary detection, which must be repeated after cut-
ting away part of the object. Octree methods require addi-
tional preprocessing to create the tree structure, plus
pointer dereferencing operations to access each node. Our
method gives the user quick views of the object soon after
the gray-scale data are available and permits reasonably
fast interaction using modest computer equipment.

We have illustrated the method with views of medical
objects; however, the method can be adapted to any ap-
plication where objects are represented by three-dimen-
sional arrays of voxels. Figures 7a, b, and ¢ show parts of
the cervical spine of a live patient. In Figure 7a, some un-
wanted objects, which are disconnected from the organ of
interest, are clearly discernible; we show how these can be
identified and removed interactively to give an unob-
scured view (Figure 7b). Figure 7c¢ shows part of the same
spine cut open with a clipping plane to reveal the spinal
canal for further study. Figure 7d shows the skull of
another live patient.

The shading effects in these illustrations were produced
by running a gradient operator over depth-shaded pre-
images.3° Simple antialiasing techniques were used to
remove the jagged appearance of diagonal silhouette
edges (vertical and horizontal edges were left unchanged).

Table 1 shows relevant statistics for the objects shown
in Figure 7. The complete spine is one of the largest ob-
jects one would expect to encounter in routine clinical
practice; timings 7a and 7b can be interpreted as upper
limits for our method. Many clinical objects fall within
the ranges of 7c and 7d. These timings indicate that com-
plex objects can be displayed in a few minutes on a
minicomputer of modest capability using the BTF tech-
nique.

We turn now to the complex issue of comparing the
speed of the BTF approach with that of other direct
display methods. Unfortunately, comparative timing
measurements for the various methods on similar com-
puting equipment have not been published. We have per-

IEEE CG&A

formed experiments that indicate that slice-by-slice BTF is
faster than recursive BTF (Figure 2) or ray tracing when
implemented on a conventional minicomputer. Compar-
ing slice-by-slice BTF with a front-to-back method—
using, for example, octrees—is an interesting subject for
further research. The strength of the BTF method lies in
its simplicity. The advantage of the front-to-back method
is that once a region of the screen has been painted, subse-
quent voxels in the object (or nodes of the octree) that
project on it need not be processed; the disadvantage is
that a complex data structure is required to efficiently
determine which regions of the screen have already been
painted.

On the other hand, when special computer architec-
tures are devised, many problematic issues can be avoided
both with octree encoding and with BTF. A high-per-
formance octree display system is available from Phoenix
Data Systems, Inc., Albany, New York. A small hard-
ware prototype of a recursive BTF system, the Voxel Pro-

References

I. R. A. Reynolds, ‘““Some Architectures for Real-Time
Display of Three-Dimensional Objects: A Comparative
Survey,” tech. report MIPG84, Dept. of Radiology, Univ.
of Pennsylvania, Oct. 1983.

2. J. K. Udupa, “Display of 3D Information in Discrete 3D
Scenes Produced by Computerized Tomography,”” Proc.
IEFE, Vol. 71, No. 3, Mar. 1983, pp. 420-431.

3. G. T. Herman and J. K. Udupa, ‘‘Display of 3-D Digital
Images: Computational Foundations and Medical Applica-
tions,”’ IEEE Computer Graphics and Applications, Vol. 3,
No. 5, Aug. 1983, pp. 39-46.

4. L.S. Chen, G. T. Herman, C. M. Meyer, R. A. Reynolds,
and J. K. Udupa, ‘““3D83—An Easy-to-Use Software
Package for Three-Dimensional Display from Computed
Tomograms,”” IEEE Computer Soc. Int’l Symp. Medical
Images and Icons, Arlington, Va., July 1984, pp. 309-316.

5. E. Artzy, G. Frieder, and G. T. Herman, ‘“The Theory,
Design, Implementation and Evaluation of a Three-
Dimensional Surface Detection Algorithm,” Computer
Graphics and Image Processing, Vol. 15, Jan. 1981, pp.
1-24.

6. J.K. Udupa, ““Interactive Segmentation and Boundary Sur-
face Formation for 3D Digital Images,”’ Computer Graph-
ics and Image Processing, Vol. 18, 1982, pp. 213-235.

7. E. Keppel, ‘‘Approximating Complex Surfaces by
Triangulation of Contour Lines,”” IBM J. Research and
Development, Vol. 19, Jan. 1975, pp. 2-11.

January 1985

cessor, is now operational in the GRASP Laboratory,
University of Pennsylvania, and achieves display rates of
16 frames per second. 34351

Acknowledgments

We wish to acknowledge many helpful discussions with
L.S. Chen, G. T. Herman, S. S. Trivedi, and J. K. Udupa
of the Medical Image Processing Group. We wish to
thank D. J. Meagher, M. W. Vannier, and the anony-
mous referees for their helpful comments. Thanks are
also due to G. T. Herman for the patient data used in Fig-
ure 7 and to D. W. Ro and S. Strommer for photography.
Part of the work was carried out using the Medical Image
Processing Group computing facility. This work was sup-
ported by NIH grant HL28438. The GRASP Laboratory
is supported by grants ARO DAA6-29-84-K-0061,
AFOSR 82-NM-299, NSF MCS-8219196-CER, NSF
MCS 82-07294, AVRO DAABO7-84-K-FO77, and NIH
1-RO1-HL-29985-01.

8. J. C. Mazziotta and K. H. Huang, “THREAD (Three-
Dimensional Reconstruction and Display) with Biomedical
Applications in Neuron Ultrastructure and Computerized
Tomography,”’ AFIPS Conf. Proc., Vol. 45, 1976 NCC, pp.
241-250.

9. H. N. Christiansen and T. W. Sederberg, ‘‘Conversion of
Complex Contour Line Definitions into Polygonal Element
Mosaics,”” Computer Graphics (Proc. Siggraph 78), Vol. 12,
No. 3, Aug. 1978, pp. 187-192.

10. D. L. McShan, A. Silverman, D. M. Lanza, L. E. Rein-
stein, and A. S. Glicksman, ‘A Computerized Three-Di-
mensional Treatment Planning System Ultilizing Interactive
Color Graphics,”’ British J. Radiology, Vol. 52, 1979, pp.
478-481.

11. L. T. Cook, S. J. Dwyer, S. Batnitsky, and K. R. Lee, “A
Three-Dimensional Display System for Diagnostic Imaging
Applications,”” IEEE Computer Graphics and Applica-
tions, Vol. 3, No. 5, Aug. 1983, pp. 13-19.

12. D. S. Schlusselberg, W. K. Smith, M. H. Lewis, B. G.
Culter, and D. J. Woodward, ‘‘A General System for Com-
puter Based Acquisition, Analysis and Display of Medical
Image Data,”” Proc. ACM Ann. Meeting, Oct. 1982, pp.
18-25.

13. H. Fuchs, G. D. Abram, and E. D. Grant, ‘‘Near Real-
Time Shaded Display of Rigid Objects,’> Computer Graph-
ics (Proc. Siggraph 83), Vol. 17, No. 3, July 1983, pp. 65-72.

59

14.
15.
16.

17,

18.

19,
20.

21.

22.
23

24,

25:
26.

27.

28.
29

30.

31

60

A. Sunguroff and D. Greenberg, ‘‘Computer Generated
Images for Medical Applications,”” Computer Graphics
(Proc. Siggraph 78), Vol. 12, No. 3, Aug. 1978, pp. 196-202.

D. Meagher, ‘‘Geometric Modelling Using Octree En-
coding,” Computer Graphics and Image Processing, Vol.
19, 1982, pp. 129-147.

D. Meagher, ‘“The Octree Encoding Method for Efficient
Solid Modelling,”” PhD dissertation, Rensselaer Polytech-
nic Institute, Aug. 1982.

G. T. Herman and H. K. Liu, “Three-Dimensional Display
of Human Organs from Computed Tomograms,” Com-
puter Graphics and Image Processing, Vol. 9, Jan. 1979,

pp. 1-21.

G. T. Herman, R. A. Reynolds, and J. K. Udupa, ‘“‘Com-
puter Techniques for the Representation of Three-
Dimensional Data on a Two-Dimensional Display,’’ Proc.
SPIE, Vol. 367, 1982, pp. 3-14.

G. M. Hunter, ‘Efficient Computation and Data Struc-
tures for Graphics,”” PhD dissertation, Dept. of Electrical
Eng. and Comp. Sci., Princeton Univ., June 1978.

I. E. Sutherland, R. F. Sproull, and R. A. Schumacker, ‘A
Characterization of Ten Hidden Surface Algorithms,”’
Computing Surveys, Vol. 6, No. 1, Mar. 1974.

H. Fuchs, Z. M. Kedem, and B. F. Naylor, *“On Visible
Surface Generation by A Priori Tree Structures,”” Com-
puter Graphics (Proc. Siggraph 80), Vol. 14, No. 3, 1980,
pp. 124-133.

S. N. Srihari, ‘‘Representation of Three-Dimensional
Digital Images,”” Computing Surveys, Vol. 13, No. 4, 1981,
pp. 399-424.

T. M. Strat, ‘‘Application of Data Flow Computation to
the Shaded Image Problem,’”” working paper 163, A. I.
Laboratory, MIT, Cambridge, Mass., May 1978.

M. W. Vannier, J. L. Marsh, and J. O. Warren, ‘‘Three
Dimensional Computer Graphics for Craniofacial Surgical
Planning and Evaluation,”” Computer Graphics (Proc. Sig-
graph 83), Vol. 17, No. 3, July 1983, pp. 263-273.

C. J. Gibson, ‘“‘A New Method for the Three-Dimensional
Display of Tomographic Images,’” Physics in Medicine and
Biology, Vol. 28, No. 10, 1983, pp. 1153-1157.

L. J. Doctor and J. G. Torborg, ‘‘Display Techniques for
Octree-Encoded Objects,” IEEE Computer Graphics and
Applications, Vol. 1, No. 3, July 1981, pp. 29-38.

E. J. Farrell, R. Zappulla, and W. C. Yang, ‘“‘Color 3-D Im-
aging of Normal and Pathologic Intracranial Structures,”’
IEEE Computer Graphics and Applications, Vol. 4, No. 9,
Sept. 1984, pp. 5-19.

D. Gordon, ‘““‘Boundary Detection and Display: Some In-
formal Research Notes,”” typed notes, Dept. of Comp.
Studies, Univ. of Haifa, Israel, July 1982.

H. K. Tuy and L. T. Tuy, ‘“Direct 2-D Display of 3-D Ob-
jects,” IEEE Computer Graphics and Applications, Vol. 4,
No. 10, Nov. 1984, pp. 29-33.

D. Gordon and R. A. Reynolds, ‘‘Image Space Shading of
Three-Dimensional Objects,”’ tech. report MIPG8S5, Dept.
of Radiology, Univ. of Pennsylvania, Nov. 1983. (To be
published in Computer Vision, Graphics and Image Pro-
cessing.)

G. Frieder, D. Gordon, and R. A. Reynolds, ‘‘Back-to-
Front Display of Voxel-Based Objects,’”” tech. report
MIPG89, Dept. of Radiology, Univ. of Pennsylvania, Aug.
1984.

32. L. J. Brewster, S. S. Trivedi, H. K. Tuy, and J. K. Udupa,
‘“Interactive Surgical Planning,”” IEEE Computer Graphics
and Applications, Vol. 4, No. 3, Mar. 1984, pp. 31-40.

33. N. I. Badler, ‘“Disk Generators for a Raster Display
Device,”” Computer Graphics and Image Processing, Vol. 6,
No. 6, Dec. 1977, pp. 589-593.

34, S. M. Goldwasser and R. A. Reynolds, ‘“An Architecture
for the Real-Time Display and Manipulation of Three-
Dimensional Objects,”’” Proc. Int’l Conf. Parallel Process-
ing, Bellaire, Mich., Aug. 1983, pp. 269-274.

35. S. M. Goldwasser, ‘“A Generalized Object Display Pro-
cessor Architecture,”” IEEE Computer Graphics and Ap-
plications, Vol. 4, No. 10, Oct. 1984, pp. 43-55.

Gideon Frieder is currently professor of elec-
~ trical engineering and computer science at the
University of Michigan, where he also serves
as chairman of the Division of Computer
Science and Engineering. Prior to that he was
professor of computer science at the State
University of New York in Buffalo, a staff
member of IBM Scientific Center at Haifa,
Israel, and head of Computer Science in the
Israeli Department of Defense.

Frieder is a member of ACM, where he served as national lec-
turer and a board member of Sigmicro and is a member of the
IEEE Computer Society and TC-Micro. His interest in publica-
tion spans the areas of computer architecture, micro program-
ming, operating system design, medically motivated algorithms
for storage management in graphics, and robotic vision.

Dan Gordon is a visiting associate professor
of computer science at the University of Cin-
cinnati, where he taught from 1977 through
1979. He is on leave from the Department of
* Computer Studies at the University of Haifa,
Israel. His current research interests include
design and analysis of algorithms, computa-
| tional geometry, computer graphics, VLSI,
il and computerized tomography.

— Gordon received his BSc and MSc degrees
in mathematics from the Hebrew University in Jerusalem, and
his DSc from the Technion-Israel Institute of Technology. He is
a member of the European Association for Theoretical Com-
puter Science.

R. Anthony Reynolds is with the General Ro-
botics and Active Sensory Processing group
at the University of Pennsylvania. He hopes
to graduate with a PhD in computer and in-
formation science in May 1985. From 1976 to
1980 he was a physicist with the Cancer Con-
trol Agency of British Columbia, Canada,
working with computers in medical imaging
and radiation therapy planning. He is cur-
rently working on 3-D display of medical ob-
jects, using hardware and software techniques.

Reynolds obtained a BA in physics from Trinity College,
Dublin, in 1971. In 1973 he obtained an MSc in physics from the
University of Alberta, Edmonton. He is a member of the Cana-
dian Medical and Biological Engineering Society, the American
Association of Physicists in Medicine, the ACM, and the IEEE.

Questions about this article may be addressed to R. Anthony
Reynolds, Computer & Information Science, Moore School of
Elec. Engineering, Univ. of Pa., Philadelphia, PA 19104.

